B

NET

U

K

NeuBiro
Programmer’s guide

2017-09-14

Version 0.7

Table of contents

L INErOAUCTION ..ottt e e ettt e e e 1
00 5 2 3 (ol o0) 4 o)) € 2
3. The INPUL Aataselottt ettt et e e et e e et e e e 3
4. The Import SPeCifiCatioNS. oo\ttt e et e e i e 4
4.1. Master table definition i e 5
4.2. Context variables definition e 6
4.3. Fields definition e 6
4.4. Calculated fields definitionottt i 8
4.5. LoORUP tables . ..o e 11
4.5.1. Using lookups tables from calculated fields, 14

4.6. QUAlItY CheCKSo e 15
4.6.1. Records dedupliCation.uutttt e et e 17

4.7. Accessing the internal databaset e 18

5. The statistical PaCKagesttt e e e 20
5.1. The module’s AeSCIiPtOr. . . oottt ettt e e et e e e ettt 21
5.2. The select unit SPeCIfiCatioNSuuitti ittt e 25
5.3. The module’s statistical Code.uunn i e 26
5.3.1. Parameters passed to the R code from NeuBirot 29
5.3.2. Creation of zip compressed files.ttt e 30

5.4. The report template.ottt e e e 33

6. Example statistical packageot e 34
6.1. The sample datasetviiin it e et e e e 34
6.2. The sample IMPOTrt.SPECS . ..ottt ittt ettt et e et e et et iiae e 34
6.3. The sample statistical packaget e e 35

7. HaCKING NEUBITO . .. oottt ettt et e et e e et e e e e e ittt es 36
7.1. Accessing the SOUICe COAE ottt e et e 36
7.2. BULlAING NEUBITO . . . oottt ettt et e e e e et e e e et 36
7.3. DOCUMENTATIONL . . .« ettt ettt ettt et e ettt e et ettt 37

8. RO O EIICES . . .t 38

9. ACKNOWIEAZEIMENTSottt ettt e e e et e e e e e e 39

NeuBiro - v0.7

1. Introduction

In this guide are explained all the concepts behind the NeuBiro’s configuration.

The configuration files are based on a simple DSL (Domain Specific Language) to provide a good
degree of customization.

As described in the user’s guide NeuBiro is agnostic about the data provided for the analysis and
every aspect of the analysis must be described via configuration files.

The next image shows an overview of the working pipeline of NeuBiro.

Data import }—b Data processing }—b Collect and aggregate Generate PDF report
| partial results

eprocess import specs esprepare data
epopulate int. DB erun statistical code
egenerate calc. fields ecreate part. results

Figure 1. overview of the main workflow

1. Introduction 1

NeuBiro - v0.7

2. Basic concepts

The main components needed to create an analysis with NeuBiro are:

the input dataset
 the import specifications
* the statistical package

 the report template
All the configuration files are based on a simple DSL which uses the Groovy syntax.

TBW

2 2. Basic concepts

NeuBiro - v0.7

3. The input dataset

Everything starts with the data; NeuBiro is capable of reading an input stream in CSV format.
For the process to succeed it is important that the CSV file has an header representing the field

names:

NAME , SURNAME , BIRTH_DATE
John,Doe, 15/03/1970
Mary,Doe,24/10/1970

Michael,Smith,10/01/1968

In this way the importer module, can recognize every single column with a unique name. To make
its work, the importer module, relies on the import specifications as we will see in the next section.

The import process reads the entire file and creates internal tables backed by a relational database.

3. The input dataset 3

NeuBiro - v0.7

4. The import specifications

The import specifications are the way we have to map the input data. Only the fields defined in the
specifications will be imported. This way we can have a big dataset that can be reused for different
analysis and it is possible to optimize our code and memory usage using only the fields we need.

The entire import process is summarized in the following image:

‘ Read import specs l—}| Acquire user vars

—|

Prepare tables }7

—b‘ Import lookups }—b‘ Import data

| for each line

p ‘ Data imported

ofields
scalculated fields

elookup tables

‘ calculate value }—b‘

import field

Figure 2. Overview of the import process

What follows is an example for an import specification:

master { @
"THETABLE' { @
context { ®

}...
fields { @

}
calculatedFields { ®

}...
recordCheck = { ®
}...

locf { @

}...

}
}

@ master block
@ master table block

® variables definition

4. The import specifications

NeuBiro - v0.7

@ fields definitions
® calculated fields definitions
® recordCheck definition

@ LOCF configuration

0 Even if the DSL permits the definition of multiple tables only one master table is
allowed in the actual NeuBiro implementation

4.1. Master table definition

The master table definition describes the input dataset; all the definitions are enclosed in a master
{} block

Inside the master {} block can be used the following elements:

Option name Type Default Notes

label string false The table description

mandatory boolean true The table is mandatory (table in master block is always
mandatory)

context {} — — Definition of the variables to request to the user

fields {} — — Definition of the fields to import from the dataset

calculatedFields — — Definition of the calculated fields

{}

recordCheck = {} code — Record level checks

locf {} — — Configuration for the LOCF algorithm

The following example code defines a master input table named PERSONS_TABLE

master {
"PERSONS_TABLE' { @
label = "Main persons table" @
mandatory = true @

}
}

@ name of the table when imported in the internal database
@ description of the table

® this table is mandatory

Master table is always mandatory and must be specified by the user before
starting the import. This flag is useful when using optional lookup tables as we
will see in the next setions.

4.1. Master table definition 5

NeuBiro - v0.7

Has to be noted that, even if the syntax of the master {} permits to specify more tables the current
NeuBiro implementation uses only one table.

4.2. Context variables definition

Context variables can be used to ask information to the user tha can be useful to the import
process.

These variables can be defined in the context {} block:

context {
"CUR_YEAR' {
type = "integer"
label = "Current year"
mandatory = true
}
}

And the following options are available:

Option name Type Default Notes

type string string one of integer, decimal, string
label string — The variable’s description
mandatory boolean false The table is mandatory

The variable defined here will populate an input area on the import tab and can be used in
calculated fields using the context associative array.

4.3. Fields definition

Inside the table block we have to define the fields we want to map (and import). Only the fields
specified in this block will be used to the create the internal database table.

To define the fields we need a fields {} block, the following elements are available:

Option name Value Default Notes
type see varchar The type of the field

table
size numeric 255 The size of the field in case of a varchar
format string — The format used to parse the field (eg. yyyy/MM/dd)
nameTo string — The name to assign to the field in the internal database
valid code — Code block that returns true if the field’s value is valid

6 4.2. Context variables definition

NeuBiro - v0.7

Option name Value Default Notes

mandatory boolean false The field is mandatory (eg. cannot be missing otherwise the
entire record is discarded)

The possible values of the type option can be:

Type Description

varchar alphanumeric characters
int integer value

smallint small integer value
boolean boolean value

date date value

Fields can be defined as follow:

fields {
"FIELD_NAME_1' { @
type = "varchar" @
size =10 ®
nameTo = "NEW_FIELDNAME_1" @
}

"FIELD NAME 2' {
type = "int"
}

@ the quoted name before the opening bracket is the field name as defined in the CSV file
(FIELD_NAME_1 in the example).

@ type of the field
® size of the field (used only for varchar)

@ the name we want to use in the internal database
The field’s name has to match the one used in the dataset file we want to import.

The fields {} block must reside into the table block:

4.2. Context variables definition 7

NeuBiro - v0.7

master {
"PERSONS _TABLE" {

fields {
"FIELD_NAME_1' {
type = "varchar"
size = 10
nameTo = "NEW_FIELDNAME 1"
}
}
}
}

At the end, in the above example, we are creating an internal table named PERSONS_TABLE and, after
the import, the table will have one field named NEW_FIELDNAME_1 of type varchar and size 10 the
value of the field will be the one named FIELD NAME 1 from the CSV dataset.

The fields will be imported in the internal database after the conversion to the specified type. In
case of fields having a particular format (eg. dates) it is important to also specify the format = ""
option (eg. yyyy/MM/dd) otherwise the field will not be parsed correctly hence il will result in a
missing value imported into the database.

For each field can also be specified a valid {} block:

fields {
"FIELD_1" {
type = "int"

valid = { value -> @®
if (value < 10 && value > 20) {
false
}
¥
}
+

@ the code block used to check if field is valid

The optional valid code block receives the actual value of the field and therefore can perform all
the checks needed to validate it. If the code block returns false the value of the field will be set to
missing otherwise it will remain untouched.

A typical use of this feature is to enforce valid ranges for the field.

4.4. Calculated fields definition

If needed we can also define calculated fields; a calculate field is a field not originally present into
to the dataset that will be created on the fly during the import process.

8 4.4, Calculated fields definition

NeuBiro - v0.7

The calculatedFields {} must reside inside the table block, at the same level of the fields {} block:

master {
"PERSONS_TABLE" {

fields {

}
calculatedFields {

}
}
}

This kind of fields are defined inside a calculatedFields {} block and the available options are:

Option name Value Default Notes
type see varchar The type of the field
table
size numeric 255 The size of the field in case of a varchar
persist boolean true Flag to indicate if the field must create a column in the

internal table or not
value code — Code block that calculates the field’s value

mandatory boolean false The field is mandatory (eg. cannot be missing otherwise the
entire record is discarded)

What follows is an example definition of a calculated field:

calculatedFields {
"CALC_FIELD 1' { @
type = "varchar" @
size =10 ®
persist = false @
value = { record, context -> ®
"A VALUE" ®
}
}
}

@ the quoted name before the opening bracket is the field name
@ type of the field

® size of the field (used only for varchar)

@ flag to persist or not the field into the internal table

® the code block used to populate the field’s value

4.4, Calculated fields definition 9

NeuBiro - v0.7

® in the Groovy language the return statement can be omitted

The persist option is useful when we want to split the calculation of a field in several steps, using
persist = false we are creating a temporary variable that will not be written in the internal
database.

The value {} block represents the way we have to produce the value for our calculated field. The
code block accepts 2 arguments:

Arg name Description
record associative array containing all the fields imported from the input dataset
context associative array containing values entered by the user as defined in the

context {} block of the import specifications

and return the value that will be used to populate the field.

In the value {} block we can use all the standard libraries provided by Groovy/Java, an example
code can be:

calculatedFields {
"RECORD_DATE' {
persist = false @

type = "date"
value = { record, context ->
try {
Date.parse("yyyy-MM-dd", record['BIRTH_DATE']) @
}
catch(Exception) {
null
}
}

}
}

@ only internal use, we don’t want this field into the final table

@ Java/Groovy code to parse the textual date

The above example creates a new field called RECORD_DATE of type date parsing the string
representation of the field BIRTH_DATE coming from the input dataset.

A more useful example can be the following:

10 4.4, Calculated fields definition

NeuBiro - v0.7

'BIRTH_DATE' { @
persist = false

type = "date"
value = { record, context ->
try {
Date.parse("yyyy-MM-dd", record['BIRTHDAY'])
}
catch(Exception) {
null
}
}
}
"AGE' { @
type = "int"
value = { record, context -> //
start = record["BIRTH DATE"]
recordDate = record["RECORD_DATE"]
yearsBetween = recordDate[Calendar.YEAR] - start[Calendar.YEAR] ®
}
}

@ temporary fields to store the birth date in Date format

@ the AGE field will be persisted an will contain the age in years

® return value (in Groovy the last expression evaluated)

Once a calculated field is created it is inserted into the record associative array; in this way its value
will be available for processing by other calc fields. It is important to note that the order in which

the calc fields appears in the source code is significant; we cannot get the value of a field not
already calculated.

This is demonstrated in the above example where we first create a field named BIRTH_DATE and
then, in the next calc field, we use it.

Q Please note that the field’s name used to retrieve a value (eg. record["FIELDNAME '])
must be the one as defined in the input file even if we use the nameTo to rename it.

4.5. Lookup tables

The import specifications can define lookup tables as well. Such tables can be used to integrate the
master dataset and/or be used to create additional fields into the internal database of NeuBiro.

These tables are external to the master dataset and are imported in a second step; in reality the
lookup tables are imported before the master dataset. In this way we can have access to all the
information contained in them during the creation of calculated fields.

Lookup tables are defined inside a lookups {} block and their definition is very similar to the one
used to describe the master table.

4.5. Lookup tables 11

NeuBiro - v0.7

Inside the lookups {} block can be used the following elements:

Option name Type Default Notes
label string false The table description

skipAutold boolean false Flag to indicate if the import process must skip the creation
of the ID field

mandatory boolean false The table is mandatory

fields {} — — Definition of the fields to import from the dataset
calculatedFields — — Definition of the calculated fields

{}

indexes {} — — Definition of the indexes to create for the lookup table

In the lookups {} we can define as many tables as we need.

An example definition can be:

lookups {

"LOOKUP_TABLE' { @
label = "Description”
mandatory = true @
skipAutoId = true ®
fields {

. @
}

calculatedFields {
... ®
}

indexes {
... ®
}
}
}

@ the name of the lookup table

@ the table is mandatory an must be imported
® do not create an ID field

@ fields definitions

® calculated fields definitions

® indexes definitions

The structure and the format of this block is the same already seen for the master table but with
some additions in the available config options:

12 4.5. Lookup tables

NeuBiro - v0.7

* the skipAutoId option
e the indexes {} block

The skipAutold option indicates to the importer that an ID column must not be created; if not
specified or assigned with false the resulting table in the internal database will have an ID column
with a unique value.

The indexes {} block permits the creation of indexes on the lookup table and are mainly used to
improve the performance of the system.

Inside the indexes {} block can be used the following options:

Option name Type Default Notes

primary boolean true Flag to indicate that the index is primary (imply unique)
unique boolean false Flag to indicate that the index is unique (no repeated keys
allowed)
fields string’s — List of field’s names that composes the index
list

In the following example we will define a lookup table for a codification table:

lookups {
"CODES' { @
label = "Internal codes"
mandatory = true @
skipAutoId = true ®

fields {
"CODE" {
type = "varchar"
size = 10
}

"DESCRIPTION" {
type = "varchar"

size = 20

}

}
indexes { @

'codeidx' { ®
primary = true ®
fields = ['CODE'] @

}

}

}
}

@ name of the lookup table

4.5. Lookup tables 13

NeuBiro - v0.7

@ the table must be imported

® do not create the ID field (we will use our own index)
@ indexes definition

® the name of the index is codeidx

® the index is primary

@ the index is based on the field named CODE

4.5.1. Using lookups tables from calculated fields

Once the lookup tables are imported we need a way to retrieve the data. The following code shows
this technique:

1 "DECODED_FIELD' { @

2 type = "varchar"

3 size = 100

4 value = { record, context ->

5 def code = record['CODE"]?.trim()
6 if (code) {

7 def codes = mmg.lookup("CODES", "CODE", ["CODE", "DESCRIPTION"]) @
8 if (rows) {

9 def result = codes[@].CODE
10 result
11 }
12 else {
13 null
14 }
15 }
16 else {
17 null
18 }
19 }

20 }

@ calculated field definition

@ use of the lookup function

In the example we see a normal definition of the calculated field but, at line 7, <2> we can note the
usage of the lookup() function.

The syntax of the function is:

0BJ.lookup(LOOKUP_TABLE, FIELD_TO_SEARCH, LIST_OF_FIELDS_TO_RETRIEVE)

where:

 0BJ is the string (literar or a variable) containing the value we want to lookup.

14 4.5. Lookup tables

NeuBiro - v0.7

* FIELD_TO_SEARCH is the name of the field in the lookup table in which to find the value specified
in 0BJ

e LIST OF FIELDS_TO_RETRIEVE is the list of fields name to retrieve from the selected records of the
lookup table

The function returns an array, each element of the array is a map containing the fields specified in
LIST_OF _FIELDS_TO_RETRIEVE

By example if we want to retrieve the description associated to the code 009 from the lookup tables
named CODES

def codeToSearch = "009"
def values = codeToSearch.lookup("CODES", "CODE", ["DESCRIPTION"])

def description = values[@].DESCRIPTION

The variable description will contain the decode value.

4.6. Quality checks

Data quality check within the import procedure is essential:

* to make the data custodian aware of any pitfalls in data collection, storage or exchange formats

* to discover errors in input data or the configuration of import (selection of wrong units of
measurement for numeric fields, wrong values for enumerated fields, wrong format for date
fields)

* to reduce the risk of failure or unexpected behavior during statistical processing

* to reduce the risk of biased results in any statistical output

In NeuBiro the quality checks are implemented into the import.specs file and can be differentiated
into 2 levels:

* field level

 record level
For the field level there are 2 types of checks: implicit and explicit.

Implicit checks are performed by the import engine with the goal to set to missing a field’s value if
it doesn’t respect the format defined in the specs. The explicit checks are written by the user using
the valid = {} block in the field’s definition. The valid check should return a true or false value, if
false is returned the field’s value will be set to missing.

The record level check can "observe" the entire record imported and with all calculed fields already
in place. At this level the code can update field’s values, perform checks record wide and even
choose to discard the record entirely.

For example the record check can be used to verify the out of range values for specific fields or to

4.6. Quality checks 15

NeuBiro - v0.7

set the value of one field depending on the values of others in the same record.

The record check is defined in the following way:

master {
"MASTERTABLE' {

1

2

3 .

4 recordCheck = { record ->

5 def newRecord = record @
6 def action = "SAVE"

7 def message

8

9 if (newRecord['DOB'] > newRecord['EPI DATE']) {
10 action = "DISCARD" @
1 message = "The record has incoherent values and will be discarded"
12 }
13
14 if (newRecord['AGE'] < @) {
15 newRecord['AGE'] = null ®
16 }
17
18 return [@
19 action: action,
20 message: message,
21 record: newRecord
22]
23 }
24 ces
25 fields {
26 .
27 }
28 calculatedFields {
29
30 }
31}
32 }

® copy the original record in a temporary variable
@ record will be discarded if dates are wrong
® set the AGE field to missing

@ the return structure

The return value of the recordCheck code is an associative array and must have the following
structure:

16 4.6. Quality checks

action: action,
message: message,

Ul A W N =

]

NeuBiro - v0.7

0)
@

record: newRecord ®

® what to do with the record, options are SAVE or DISCARD

@ If DISCARD this message will be shown in the log

@ the record to be written

The code of the recordCheck block will be evaluated for each imported row. The returned record will
be written into the internal database but only after the check of the mandatory fields; infact if a
mandatory field is empty the record will be always discarded.

4.6.1. Records deduplication

NeuBiro provides a simple LOCF (Last Observation Carried Forward) algorithm implementation.

The behaviour of the algorithm can be controlled adding a block named locf {}, inside the locf {}
block can be used the following options:

Option name Type

keys string’s
list

order string’s
list

exclude string’s
list

Default Notes

— List of field’s names that composes the unique key

— List of fields to order the table with

— List of fields whose values will not carried forward

The block for the LOCF task can be defined as follow:

master {
"MASTERTABLE' {

loct { @

table = "MASTER_LOCF" @

keys = ['PAT_ID'] ®

order = ['PAT_ID',
exclude = ['CHOL',

}

4.6. Quality checks

"EPI_DATE'] @
'HDL', 'LDL'] ®

17

NeuBiro - v0.7

@ locf block

@ the name of the table that will be created after the LOCF task
® aggregate by PAT_ID

@ Sort by PAT_ID, EPI_DATE

® do not carry forward on CHOL, HDL and LDL

At the end of the process a new table (named as defined in table) will be created into the internal
database, such a table will be compacted to just one record per unique key.

Please note that the fields specified in order are very important for the process to succeed.

4.7. Accessing the internal database

The internal database used by NeuBiro is a standard SQL database; when NeuBiro is running it
exports an endpoint that can be used to explore all the tables stored into the system.

To start the database console we can use a customized launch script; from the command line:

Launch the db console from Windows

cd <NEUBIRO_INSTALL ROOT>
bin\dbconsole.bat

Launch the db console from linux/OS X

cd <NEUBIRO_INSTALL ROOT>
bin/dbconsole

The above command will open the default internet browser on the connection page of the console:

18 4.7. Accessing the internal database

NeuBiro - v0.7

English FPreferences Tools Help
Saved Settings: Generic H2 (Server)
Setting Name: Generic H2 (Server) e |5a1.re|| Fn‘.ﬂrnmre|
Driver Class: org.h2.Driver
JOBC URL: jdbe:h2:tep:localhost:9123 file://neobox-tep-db|
User Name:
Password: i'
|Ennnﬂm| |TEEI Cnnnﬂnlinn|

Figure 3. H2 database console connection window

The JDBC URL required by the console is as follow:

jdbc:h2:tep://localhost:9123/file:///FULL_PATH_TO_DB_FILE/neubiro-tcp-db

where FULL_PATH_TO_DB_FILE is the installation path of NeuBiro. The fields User Name and Password
must be left blank.

Please keep in mind that for this to work NeuBiro must be running.
For more information about the db console please refer to the H2 database

documentation at the following url:
http://www.h2database.com/html/tutorial.html

4.7. Accessing the internal database 19

http://www.h2database.com/html/tutorial.html

NeuBiro - v0.7

5. The statistical packages

The statistical package is the core of the analysis and it is composed by, at least, one module.

Each module is in turn composed by a specification file indicator.specs and one (or more) file
written in R language.

Usually the statistical package also contains the import specifications described in the previous
chapter.

A typical structure of a statistical package is:

<ROOT>

+-- import

| ‘-- import.specs @
‘-~ modules @

+-- module_1

| +-- indicator.specs @
| ‘-- indicator.r @
+-- module_2

| +-- indicator.specs
| ‘-- indicator.r

+-- ...

+-- module_n

| +-- indicator.specs
| ‘-~ indicator.r

+-- report ®

| +-- master.xml ®

| +-- chapter.xml @
| +-- master.xsl

| ‘-~ resources ©

| ‘-~ logo.png
‘-- selectUnit.specs

@ import specification

@ modules root

® module descriptor

@ entry point for the module code

® final report descriptor’s root

® master file for final report

@ master file for each chapther of the final report
master xsl file for final report formatting

© additional resources

select unit specs

20 5. The statistical packages

NeuBiro - v0.7

Due to the fact that the data and the statistical code who process them are tightly coupled and is
better to keep them together but this is not mandatory.

With these information NeuBiro, can implement the following execution schema:

Define execution
graph

Read module specs }—b‘ Prepare data }—b| Execute statistical code

sfork R process
eexecute indicator.r
esave partial data

for each module

L} Aggregate partial —b‘ Generate PDF report ‘

results

euse DocBook template
ecollect
emerge

Figure 4. Overview for the execution phase

Essentially NeuBiro creates the execution graph taking care of the dependencies between modules
and for each module performs the following tasks:
» the module’s data are prepared (as defined in the module’s spec)

* the R process is invoked and writes on disk the partial data xml data and other artifacts eg
images

* the R process returns and NeuBiro performs a check to verify the data have been created

When all the the modules have been executed all the partial outputs are merged together to create
the final report.

5.1. The module’s descriptor

A module descriptor describes the preparation of the data needed to the companion R code;
NeuBiro will use this information to prepare all the needed artifacts cthat in turn will be referenced
from the statistical code.

The goal of this approach is that each module can concentrate on a small part of the computation
using only the data it needs optimizing code and resources. Each module can depend from other
modules so we can, by example, an hidden module who produces common artifacts that can be
reused by others.

A module descriptor must reside in a file named indicator.specs and contains a single indicator {}
block.

The available elements for a definition of a module are:

5.1. The module’s descriptor 21

NeuBiro - v0.7

Option name Type Default Notes

id string = — Unique id of the module

description string = — Module’s description

dependsOn string’s — List of the dependent modules

list

hidden boolean false Flag to indicate that the module is internal and not shown to
the user

excludeReport boolean false Flag to indicate that module will not participate to the final
report

input {} — — Rules for the creation of the input file for R code

output {} — — Rules to check the artifacts produced by the R code

What follows is an example of a module descriptor:

indicator {
id = 'module 1' @

description = "Description of the statistical module" @
dependsOn = ['setup'] ®

hidden = false @

excludeReport = false ®

input { ®

}

output { @

}

}
@ module’s id
@ module’s description
® list of the dependent modules (to be executed before this one)
@ hidden flag, if true the module will not be shown in the modules' list
® exclude flag, if true the module will not participate to the creation of the final report
® input {} block to describe the input of the R code
@ output {} block to describe the output of the R code

As said before this descriptors defines which data must be prepared for the R code; those data are

22 5.1. The module’s descriptor

NeuBiro - v0.7

in the form of a csv file whose content and name is specified thanks to the input {} block.

The available elements into such block are:

Option name
table

fields

groups

criteria

sql

order

file

Type
string

string’s
list

string’s
list

string
string

string’s
list

string

Default Notes
— Name of the master table

— List of the fields from the master table

— List of the fields from the master table for grouping

— TBW
— TBW

— List of the fields from the master table for ordering

— Name of the output file

By example, to create a file named input.csv like the following:

SEX, AGE_RANGE, COUNT

M,1,150
M,2,234
F, 1,412
F,2,223

we can write:

5.1. The module’s descriptor

23

NeuBiro - v0.7

indicator {
input {
table = "MAIN" @
fields = [@

'SEX', 'AGE_RANGE',
"count(*) as COUNT'

1
groups = [®

'SEX', 'AGE_RANGE'
]

file = "input.csv" @
}

@ master table name
@ fields to select
® fields for group by

@ output filename
What happens with the previous code is:

1. NeuBiro compose an SQL selection against the table named MAIN using what specified in the
fields and groups variables

2. Writes the obtained dataset into a file named input.csv

Essentially the input block translates to the following SQL statement:

SELECT SEX, AGE_RANGE, count(*) AS COUNT FROM MAIN GROUP BY SEX, AGE_RANGE

The input {} block can also describe multiple files to be created as demonstrated in the following
code:

24 5.1. The module’s descriptor

NeuBiro - v0.7

indicator {

input {

"FIRST' {
table = "MAIN"
fields = [...]
groups = [...]
file = "input_one.csv"
}
"SECOND" {
table = "MAIN"
fields = [...]
groups = [...]
file = "input_two.csv"
}
}

The last element is the output {} block, it is used to describe, and to verify, the output from the R
code.

In the following snippet we tell to NeuBiro to check for the presence of a file named report.xml:

indicator {
output {
files = ["report.xml"] @
}

@ list of the files expected at the end of the R code execution

If all the files specified with the files variable are not present the indicator will produce an error
and the execution will be stopped.

5.2. The select unit specifications

The select units specs permits to modify the behaviour of the statistical packages, feeding the
statistical routines with a subset of the data.

5.2. The select unit specifications 25

NeuBiro - v0.7

variables {
"AGE_RANGE' { @
table = "master" @
label = "Age range" ®
type = "string" @
}
}

@ field to consider for the extraction of the unique values
@ table containing the field
® label (currently non implemented)

@ type of the field

TBW

A This section is draft, work is in progress on the implementation of the select unit.

5.3. The module’s statistical code

The statistical code has in charge all the statistical calculation and it’s output is represented by an
xml file containing a portion of the final report. It receives the input data specified by the module
descriptor as described in the previous section and performs all the statistical processing needed by
the module producing the expected output and a mandatory file named report.xml containing the

partial code that will be merged to produce the final report.
What follows is an example for the statistical code:

indicator.r file

Entry point

#

baseDir = Root directory for all indicators
workDir = Work directory for this indicator

data <- read.table(paste(workDir, "/module_1/input.csv", sep=""), header=TRUE, sep=

,", colClasses="character") @®
do someting with the data @
write xml file for report ®

rm(list=1s(all=TRUE)) @

@ load the data to process

26

5.3. The module’s statistical code

@ do required processing

NeuBiro - v0.7

® write the partial xml code for the final report

@ clean up R space

When NeuBiro start to process a module, after the data preparation step, invokes the R interpreter
looks for a file named indicator.r and pass to the code two variables:

* baseDir - the root directory of the statistical package

» workDir - the working directory where to write the produced data of this module

Usually a statistical module is quite complex and it is better to decouple the common function for a
better code reuse, what follows is an example on how to better organize the code:

<ROOT>

‘-~ modules @
+-- commons
| +-- tools.r @
| ‘-~ 1ibs2.r @

+-- module_1

| +-- indicator.specs

| +-- indicator.r ®

| ‘-~ implementation.r @

@ modules root
@ common files shared by all modules
® entry point for the module code

@ implementation of the module code

The R code is divided in multiple files grouping the code in common to exploit the DRY (Don’t

Repeat Yourself) principle.

In the next snippet we can see an example for an entry point that in turn load the real

implementation of the module, the file implementation.r,

indicator1().

5.3. The module’s statistical code

and executes its main function

27

NeuBiro - v0.7

indicator.r file

Entry point

#

baseDir = Root directory for all indicators
workDir = Work directory for this indicator

source(paste(baseDir, "/commons/tools.r", sep="")) @
source(paste(baseDir, "/module_1/implementation.r", sep="")) @

indicator1() ®

rm(1list=1s(all=TRUE)) @
@ load common functions
@ load module implementation

® executes the implementation code

@ clean up R space

The real implementation of the module code can be as follows:

28 5.3. The module’s statistical code

NeuBiro - v0.7

implementation.r file
indicator1 <- function() {

Set the working directory
setwd(workDir) @

Load data
tablel <- read.table(paste(workDir, "/input.csv", sep=""), header=TRUE, sep=",") @

... do something with the loaded data ...

Write report.xml file
writeTable(file="report.xml", ®
data=tablel,
append=append,
vars=c("sex","n","perc"),
headlabs=headlabs,
headwidt=c("260pt","60pt","60pt"),
colalign=c("1left","right","right"),
headalign=c("left", "center","center"),
varcolalign=c("align_1","align_2","align_3"),
footlabs=footlabs,
footnote=footnote,
title=title,
section=section,
graph=NULL)

@ set the working directory
@ load the data from the input.csv prepared by the module descriptor

® write the report.xml file using a custom function

Thanks to the workDir and baseDir path passed to each module it is possible to retrieve all the
artifacts produced by all the other modules reusing and minimizing the calculations for complex
tasks.

5.3.1. Parameters passed to the R code from NeuBiro

When NeuBiro run the R process to execute the statistical code it send several variables that reflects
the choices made by the user using the graphical interface.

The list of the variables is:

Variable Description
baseDir TBW
workDir TBW

5.3. The module’s statistical code 29

NeuBiro - v0.7

Variable Description
language TBW
operator TBW
year TBW
engine_type TBW
reference TBW
reference_files TBW
input_files TBW
funnel_group TBW
select_unit TBW

Is up to the statistical code to use or ignore them, it is not mandatory, and can be used to implement
more complex analysis.

5.3.2. Creation of zip compressed files

Compressed files can be useful to create data packages that can be sent to outside repository or to
be used by others. The creation of such a file can be challenging when working in a multi platform
environment, in fact R libraries are often different for each platform leading to incompatibility
problems.

To overcome these problems NeuBiro provides a specific support to create this kind of file
abstracting the underlying operating system.

To create a zip file, the indicator’s code, has to simply create the single files that will compose the
compressed archive and create a simple descriptor in YAML format; NeuBiro will take care of the
creation of the .ZIP file.

Q The descriptor’s filename must have the .zip.yml extension to be recognized as
zip descriptor.

What follows is a sample zip descriptor file:

example.zip.yml

ZIP FILE DESCRIPTOR
file: output.zip @
files:
- file _one.csv @
- file_two.csv @
- file_three.csv|file_three_renamed.csv ®
cleanup: true @

@ name of the final zip file

30 5.3. The module’s statistical code

NeuBiro - v0.7

@ list of files that will compose the final zip archive
® specifies a new name for the file in the zip archive

@ cleanup flag, if true NeuBiro will delete the intermediary files leaving only the generate zip file

In the following listing is shown a simple function for the R language to create the specification file.

writeZipDescriptorFor <- function(zipfilename, fileslist, cleanup=TRUE) {
descfilename <- paste(zipfilename, ".yml", sep="")
fileConn <- file(descfilename)
writeLines("# ZIP FILE DESCRIPTOR", fileConn)
close(fileConn)
fileConn <- file(descfilename, open="at")
writeLines(paste('file: ', zipfilename, sep=""), fileConn)
writeLines(paste('cleanup: ', ifelse(cleanup, 'true', 'false'), sep=""), fileConn)
writeLines('files:", fileConn)
for (i in 1:length(fileslist)) {
writeLines(paste('- ', fileslist[i], sep=""), fileConn)
}

close(fileConn)

The function can be places in a shared library file (eg tools.r) loaded by each indicator’s code
hence reusable between them.

The following code demonstrate the use of the above described function to create two zip files:

1 main <- function() {
2 # Creates some example text files
3 fileslist <- c("descriptor-local.yml", "one.txt", "two.txt", "three.txt",
"descriptor-central.yml", "four.txt", "five.txt")
4 for (i in 1:length(fileslist)) {
createTestFile(fileslist[i])
}

Creates a file named testl.zip

fileslist <- c("descriptor-local.yml|descriptor.yml", "one.txt", "two.txt",
"three.txt") @

10 writeZipDescriptorFor("test1.zip", fileslist, TRUE)

11

12 # Creates a file named test2.zip

13 fileslist <- c("descriptor-central.yml|descriptor.yml", "four.txt", "five.txt",
"notpresent.csv", FALSE) @

14 writeZipDescriptorFor("test2.zip", fileslist)

15 }

16

17 main()

5
b
7
8
9

@ rename the source file

5.3. The module’s statistical code 31

NeuBiro - v0.7

@ do not delete the composing files
The previous code creates the following descriptors:

testl.zip.yml

file: testl.zip

files:

- descriptor-local.yml|descriptor.yml @
one.txt

two. txt

three.txt

cleanup: true

@ rename descriptor-local.yml into descriptor.yml

Please note how the source files are renamed using the following notation:

v

- original.ext|renamed.ext

test2.zip.yml

file: test2.zip

files:

- descriptor-central.yml|descriptor.yml @
- four.txt

- five.txt

- notpresent.csv @

cleanup: false

@ rename descriptor-central.yml into descriptor.yml

@ missing file

If a file is missing a log message will be reported to the user and the resulting zip file will not
contain created anyway with the remaining files.

The content of the zip files will be as follow:

testl.zip
test1.zip
+-- descriptor.yml
+-- one.txt
+-- two.txt
‘-~ three.txt
and

32 5.3. The module’s statistical code

NeuBiro - v0.7

test2.zip
test2.zip
+-- descriptor.yml

+-- four.txt
‘-- five.txt

When NeuBiro, after the execution of the R interpreter, regains control and finds a descriptor file
like the one specified above it creates the compressed archive in a cross platform way.

5.4. The report template

The final report is generated using DocBook

<R0OOT>
+-- ..
‘-~ report @

+-- master.xml @
+-- chapter.xml ®
+-- master.xsl @
‘-- resources ®
‘-~ logo.png
@ final report descriptor’s root
@ master file for final report
® master file for each chapther of the final report

@ master xsl file for final report formatting

® additional resources needed by the report template

5.4. The report template 33

NeuBiro - v0.7

6. Example statistical package

NeuBiro installation provides a sample dataset and a sample statistical package to let the user to
test the installation out of the box.

The example package can be useful to the reader of this guide to observe a simple working code.

After a successful installation the layout of the installed software will be:

C:\NeuBiro-0.7 @
+-- docs @
+-- sample-data ®
‘-- packages @
‘-- sample-package ®
+-- import ®
‘-- modules @
@ Main installation folder
@ Documentation in PDF e HTML format
® Sample data set
@ Statistical package main folder
® Sample statistical package

® Import specifications

@ Statistical modules

The information we are referring to are located under the sample-package directory.

6.1. The sample dataset

The standard installation provides a sample dataset to let the testing of the system and to verify
that all partes are working.

The sample dataset is composed by two files:

* sampledata.csv

e countries.csv

6.2. The sample import.specs

The sample data described in te previous section can be imported with the import specification
provided.

The file import.specs provides the code that implements the behaviour described in this guide and
shows the techniques for using both the master table and the lookup table.

34 6.1. The sample dataset

NeuBiro - v0.7

6.3. The sample statistical package

The sample statistical package defines three modules with the purpose to show various techniques:

Module Description

setup Setup module, not shown on the analysis window, performs initializations for
the R environment

mod1 Sample module that produces a graph and show the
mod2 Sample module to show how to use data produced by another module
mod3 Sample module to show how to create zip compressed files

A sample report template is provided as well.

6.3. The sample statistical package 35

NeuBiro - v0.7

7. Hacking NeuBiro

This section describes the organization of the source code and will provide the information needed
to work on the code base.

7.1. Accessing the source code
A This section should be revised when the code will be publicly available

All the source code for NeuBiro is available on FIXME.

The version control system used is GIT (http://git-scrn.com) and all the source code can be cloned
with:

git clone https://to.be.defined/neubiro

after cloning the repository, the working copy will have a layout similar to:

<ROOT>

+-- src @

+-- subprojects @

| +-- neubiro-app ®

| +-- neubiro-manual @

| ‘-- neubiro-sample-package ®
+-- build.gradle ®

+-- settings.gradle @

+-- gradlew.bat

‘-- gradlew

@ sources for installer

@ subprojects root

® the java application sources

@ the documentation

® sample statistical package

® main build file

@ main settings for the gradle build

gradle wrappers for windows and unix

7.2. Building NeuBiro

NeuBiro uses as build tool Gradle (http://gradle.org) and thanks to the Gradle wrapper there is no
need to install the standalone gradle distribution, it will be sufficient to use gradlew (or gradlew.bat
for windows) to run and/or compile the software.

For example, to run NeuBiro in development mode we can issue the following command:

36 7.1. Accessing the source code

http://git-scm.com
https://to.be.defined/neubiro
http://gradle.org

NeuBiro - v0.7

./gradlew run

The others tasks useful for the project are summarized in the following table:

Task Description

run Run NeuBiro in development mode

docs Builds the documentation in PDF and HTML formats

installer Creates the installer

dist Creates all the files composing the distribution (eg software, docs and samples)

The source code for NeuBiro is located at the following path: <RO0T>/subprojects/newbiro-app.

7.3. Documentation

The documentation of the project is written using AsciiDoctor (http://asciidoctor.org).

The source code for NeuBiro’s documentation, divided in users’s and programmer’s guide, is
located at the following path: <RO0T>/subprojects/newbiro-manual.

7.3. Documentation 37

http://asciidoctor.org

NeuBiro - v0.7

8. References

NeuBiro is build with the help of great open source projects:

Project

The Groovy language

The Griffon framework

H2 Database Engine

DocBook

AsciiDoctor

38

Description

a multi-faceted language for the Java
platform

a desktop application development
platform for the JVM

embeddable relational database engine

a semantic markup language for technical
documentation

a fast text processor and publishing
toolchain

URL

http://groovy-lang.org

http://griffon-framework.org

http://www.h2database.com

http://docbook.org

http://asciidoctor.org

8. References

http://groovy-lang.org
http://griffon-framework.org
http://www.h2database.com
http://docbook.org
http://asciidoctor.org

NeuBiro - v0.7

9. Acknowledgements

; This section is a placeholder, must be detailed with tasks from each contributor.

All contributions, in any form, should be reported here.

The main developers for NeuBiro are:

Developer Role

Stefano Gualdi NeuBiro software, documentation, Java/Grovvy programming

Fabrizio Carinci Statistical analysis and programming of the statistical packages, R
Language

Iztok Stotl Documentation, beta testing

9. Acknowledgements

39

	NeuBiro: Programmer’s guide
	Table of contents
	1. Introduction
	2. Basic concepts
	3. The input dataset
	4. The import specifications
	4.1. Master table definition
	4.2. Context variables definition
	4.3. Fields definition
	4.4. Calculated fields definition
	4.5. Lookup tables
	4.5.1. Using lookups tables from calculated fields

	4.6. Quality checks
	4.6.1. Records deduplication

	4.7. Accessing the internal database

	5. The statistical packages
	5.1. The module’s descriptor
	5.2. The select unit specifications
	5.3. The module’s statistical code
	5.3.1. Parameters passed to the R code from NeuBiro
	5.3.2. Creation of zip compressed files

	5.4. The report template

	6. Example statistical package
	6.1. The sample dataset
	6.2. The sample import.specs
	6.3. The sample statistical package

	7. Hacking NeuBiro
	7.1. Accessing the source code
	7.2. Building NeuBiro
	7.3. Documentation

	8. References
	9. Acknowledgements

