

Privacy Impact Assessment

Concetta Tania Di Iorio Serectrix tania_diiorio@virgilio.it

Privacy Impact Assessment of the B.I.R.O. Information System

Introduction:

Privacy impact assessment is a systematic and flexible process for evaluating a proposal/project in terms of its impact upon privacy, which has been specifically adapted to the BIRO context

Objectives:

To provide a definitive description of privacy risks, applicable privacy legislation and mitigation strategies adopted in the implementation and management of the BIRO Information System

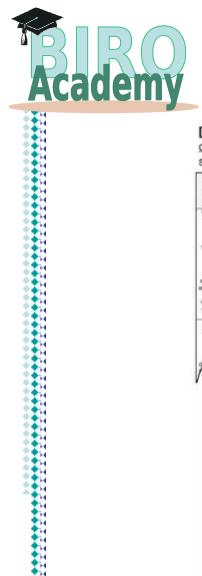
Materials & Methods

The procedure involved 4 consecutive steps:

Step 1: Preliminary PIAStep 2: Data Flow AnalysisStep 3: Privacy AnalysisStep 4: Final Report

Preliminary PIA

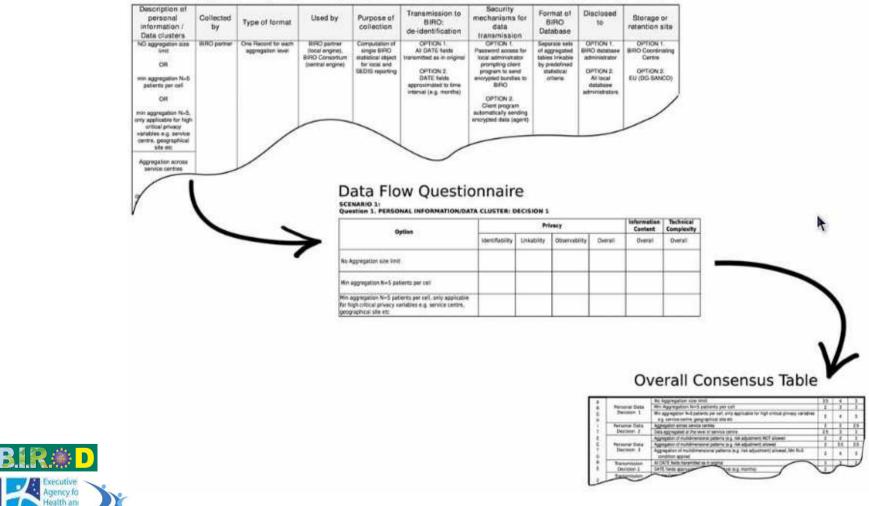
- Discussion on data flow: physical/logical separation of personal information/data
- Systematic review of the privacy literature:
 - Ovid Medline: 64 biomedical and 11 law articles were identified
 - Second search on Law Journals using the same criteria
 - A core set of fourteen papers was selected by comparing abstracts against main project objectives
- Papers were reviewed by the PT to complete a comprehensive report of the first step and identify a short list of possible candidate architectures.



Data Flow Analysis

- Delphi Consensus Procedure to define the best alternative, using the following materials:
 - data flow tables (DFT), including the possible scenarios for the collection, use and disclosure of personal information/data, with a number of possible options
 - information flow questionnaire (IFQ), to assign marks to each scenario/option
 - overall consensus table (OCT), ranking scenarios/options
- Materials were assembled using the procedure presented in the following figure

:


Consumer

Procedure

Data Flow Table

CANDIDATE ARCHITECTURE 2: AGGREGATION BY GROUP OF PATIENTS

Scenario 1: Grouping condition directly set by statistical object (e.g. ordered frequency distribution of LOS by CENTRE to compute variability of medians)

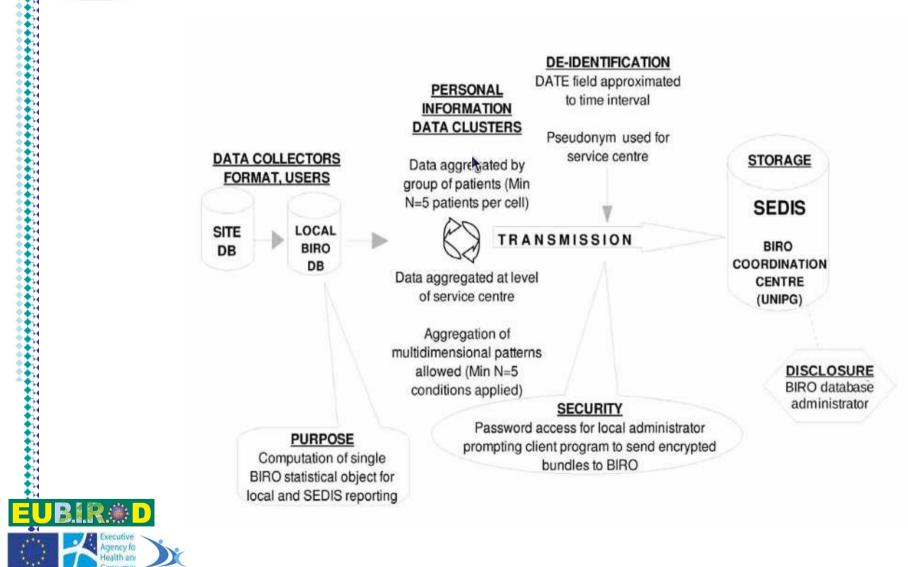
Privacy Analysis & Final Report

Privacy Analysis

- Cover issues arising in data transfer from local centres to the central database
- Potential privacy risks identified and analysed through a summary table indicating mitigation strategies to be implemented
- The level of risk was classified according to an ordinal scale of intensity

Final Report

- In depth analysis of the selected architecture
- Compilation of all materials/results into an overall report


Results

- Three main candidate architectures were identified:
 - "individual patient data, de-identified through a pseudonym"
 - "aggregation by group of patients, with Centre's IDs available in de-identified form, securely encrypted"
 - "Aggregation by Region"
- The Delphi panel selected the second one as the best alternative by ranking the three alternative scenarios, including options for their implementation

Best architecture

Discussion: Privacy Analysis

- The BIRO Information System involves the use of sensitive-medical data collected through diabetes registries within national boundaries and further processed for public health studies at international level
- At a general level, the kind of processing that takes place in the BIRO centres is legitimate ex Article 8 (3) of the Data Protection Directive

Discussion: Privacy Analysis (2)

- BIRO centres anonymise data before any transfer to the BIRO central database
- Recital 26 of the EU Directive, anonymisation allows personal data processing without consent: BIRO processing falls outside the scope of the data protection principles
- The BIRO system processes only statistical objects stored as aggregate comma delimited files
- Pseudonyms for Centres' IDs

Discussion: Privacy Analysis (3)

- The further processing by the global statistical engine cannot pose any privacy risk, either directly or indirectly
- Trans-border data flow envisaged in BIRO is legally viable according to the EU legislation.
- Publication of project results is performed to avoid any direct/indirect identification of data subjects and/or local centres

Privacy contingency risks

Element	Nature of risks	Level of risks			Comments	Mitigating Mechanisms
		Low	Medium	High		
Individual data: Pseudonym used for patients' IDs + Data is Aggregated (N=5 patient per cell)	Individual privacy	x			Pose an indirect risk to individual's privacy	Non-Reversible De-identification
Pseudonym used for Centres IDs	Non-Individual Privacy		x		Pose an indirect risk to Centres' privacy	Reversible De-identification + Reporting System: percentage
Data Transmission	Security Measures	x			Pose an indirect risk to individual's privacy	Encryption
Access to the BIRO network	Security Measures		×		Pose an indirect risk to individual's privacy	Secure applications Hacking tests
Global Statistical Analysis	Individual privacy + Non- Individual Privacy + Security Measures	x			Pose an indirect risk to individual's privacy and centres privacy	Non-reversible de-identification + Encryption

Conclusions

- Privacy impact assessment shows that the selected BIRO architecture fulfils privacy protection requirements by addressing and resolving broad privacy concerns from different angles.
- The architecture of the system flexibly affords the best privacy protection in the construction of an efficient model for the continuous production of European diabetes reports.
- The privacy impact assessment method developed and applied in B.I.R.O. may represent a general tool that can be used to design trans-border health information systems.

