

Distributed Statistical Analysis Software

Fabrizio Carinci, Luca Rossi Serectrix, Italy

Fragmented Analysis

Box 3.4.2. Output Logistic Model on all observations

Box 3.4.3. Output Logistic Model on aggregate data

The LOGISTIC Procedure Model Information						The LOGIST Model Inform	FIC Pr nation	er ubeoc				
Data Set WORK_MODEL_ Response Variable HI_HBA Number of Response Levels 2 Number of Observations 17102 Model binary log it Optimization Technique Fisher's scoring Response Profile						Data Set Response V Number of F Number of C Weight Varia Sum of Weig Model Optimization	(ariabl Respon Observ o	e ise Levels ations nique	WORK.IN_ HI_HBA 2 16 COUNT 17102 binary logit Fisher's sco	SEDIS		
Ordered Value HI_HBA Total Frequency						Response P	rofile					
2	0	12	2246			Ordered Val	ue t	HI_HBA	Total Weigl	ht To	otal F	requercy
Probability modeled is HI_HBA=1.						2	C)	8	40	356.U 2246	.000
Analysis of Maximum Likelihood Estimates						Probability n	nodek	ed is HI_HB,	A=1.			
Standard Parameter	Wald DF	Estimate	Error	Chi- Square	Pr > ChiSa	Analysis of I	Maxim	um Likeliho	od Estimat e:	9		
		0.0000	0.4000	44 50 40	- 0004	Standard	Wa	ы Баланы	-	Chi		Pr>
GENDER	1 1	-0.6862	0.1028	44.5243 44.7555	<.0001	Parameter	DF	Estimat	e Enor	Squar	re	Chisq
CL_AGE2 CL_AGE3 CL_AGE4	1 1 1	0.0916 -0.1465 -0.2491	0.1092 0.1040 0.1086	0.7027 1.9842 5.2637	0.4019 0.1589 0.0218	Intercept GENDER CL_AGE2 CL_AGE3 CL_AGE4	1 1 1 1	-0.6862 0.2297 0.0916 -0.1465 -0.2491	0.1028 0.0343 0.1092 0.1040 0.1086	44.52 44.79 0.702 1.984 5.263	243 555 27 42 37	<.0001 <.0001 0.4019 0.1589 0.0218

Box 3.4.4. Observed/expected rates by centre using logistic regression

Centre	Den.	Num.	%Observed	% Expected	95% Lower	95% Upper	
1	7699	2189	28.4	28.5	27.5	29.5	
2	2360	1000	42.4	28.0	26.1	29.8	
3	3422	916	26.8	28.4	26.9	29.9	
4	1239	222	17.9	28.3	25.8	30.8	
5	2382	529	22.2	28.4	26.6	30.2	

Statistical Object

An element of a distributed information system that carries essential data in the form of embedded, partial aggregate components, required to compute a summary measure or relevant parameter for the whole population from multiple sites

Statistical Objects Meta-Data

	Code	Sequential code based on the taxonomy of the statistical objects dictionary
	Statistical Object	Name of the statistical object
	Description	Short description of the principal content and output of the statistical object, ar
	Variables	Type of variables (categorical, continuous)
	Properties	Mathematical and statistical properties in a distributed data environment
	Local Component	OUTPUT OF THE LOCAL STATISTICAL ENGINE Technical characteristics of the statistical object that is produced from each da Data section includes details on the format of the csv output.
	Cumulative Compo	CUMULATIVE DATASET PROCESSED BY CENTRAL ENGINE neet hnical characteristics of the procedure implemented in the central engine t Data section includes details on the format of the csv output.
•	Output	STATISTICAL OUTPUT OF THE CENTRAL ENGINE Includes the list of components that will be computed and stored in the statistic Defined codes are attributed to the list of electronic elements (e.g. XML tags, (

Statistical Objects Dictionary

SECTION 1. FREQUENCY TABLES

Univariate Frequency Distribution, Outliers, Contingency Table

SECTION 2. MEASURES OF LOCATION

Arithmetic Mean, Percentile, Range

SECTION 3. MEASURES OF DISPERSION

Variance, Interquartile Distance

SECTION 4. GRAPHICAL ELEMENTS

Barplots, Histograms, Partial boxplots, Overall boxplots, Line plots, XY Plots, Webplots, Maps, Forest plot

SECTION 5. REGRESSION

Linear regression, Logistic regression, Meta-analysis

SECTION 6. STANDARDIZATION

Standardized rate, O-E

Arithmetic mean

Code	2.1					
Statistical Object	Arithmetic Mean					
Description	Weighted average of a single characteristic, with weights equal to the number					
Variables	CONTINUOUS					
Properties	The mean of the overall sample is equal to the weighted mean of the arithmetic					
Local Component	Data vector composed of two quantities: sum of the values of the target variab DATA: <a>					
Cumulative Compo	Sum of the sum of values from each local object nentTA: <2.1.a> id, date, stratum, sum_x, n					
Output	Single value of the overall arithmetic mean: cumulative object, divided by the s DATA: <2.1.a>mean Single value of the arithmetic mean by centre: cumulative object, divided by the DATA: <2.1.b>id, date, stratum, mean					

BIRO Statistical Engine Design

Pile-up

Maps Central Engine

engine

Performance

Centre	N Patients	N episodes	Elapsed Time
1	17,552	92,237	24' 25"
2	5,315	19,434	7' 01''
3	7,846	60,274	12' 20''
4	7,827	45,345	10' 51''
5	5,008	10,994	5' 22"

LOCAL

GLOBAL	

Centre	N Patients	N episodes	Elapsed Time
1	17,552	92,237	20' 12"
1+2	22,867	111,671	20' 54''
1+2+3	30,713	217,290	21' 33"
1+2+3+4	38,540	262,635	21' 56"
1+2+3+4+5	43,548	273,629	22' 27"

